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Abstract--The heat transfer and fluid flow in the floating-zone crystal-growth process for molybdenum 
(Mo) materials is studied numerically. The input power induced by the heat source is assumed to be a 
Gaussian distribution. The steady, axisymmetric flow and temperature fields are solved using a finite 
difference method, employing a boundary-fitted curvilinear coordinate system. The shape of the molten 
zone and the temperature and velocity fields in the melt are coupled and are strongly dependent on the 
magnitude of the input power. A four-cell flow structure in the melt is obtained. The effect of thermocapillary 
convection is much more significant than that of buoyancy-driven convection. The results show that the 
steady, axisymmetric flow may not exist when the strength of the flow reaches a certain magnitude, which 
varies insign.ificantly with the change of the heating region and the rod diameter. The present results are in 

good agreement with experimental results. 

1. INTRODUCTION 

In a floating-zone crystal-growth process, two types 
of natural convection may occur in the molten zone 
due to the non-uniform temperature distribution: 
buoyancy-driven tlow induced by the density gradi- 
ents inside the melt, and thermocapillary flow gen- 
erated by the surface-tension gradients along the free 
surface of the melt. Barthel et al. [1] have found that 
the radial impurity distribution in Mo single crystals 
grown by the elemron beam floating-zone method is 
governed by the ttow structure in the molten zone. 
The convective tr~.nsport present in the melt can sig- 
nificantly affect the shape and stability of the zone, 
which determine the structure and quality of the 
resultant crystals. Convection instability was thought 
to be responsible for the presence of striations in the 
crystals. Striations in single silicon (Si) and mol- 
ybdenum (Mo) crystals were believed to be due to 
oscillatory thermocapillary convection [2, 3]. Kit- 
amura et al. [4] found that the shape of the solid- 
liquid interface du~:ing the floating-zone growth affects 
the properties of the resultant crystal such as dis- 
location density, presence of inclusions and cracks. 
They believe that, to grow a high quality single crystal, 
the interface must be fiat or convex towards the melt. 

To study the convection phenomena, the floating 
zone has typically been simplified by vertical liquid 
bridges held between two concentric, cylindrical 
heated rods. In this model, the zone length and the 
heating condition can be selected independently and 
the effect of the shape of the solid-melt interface is 
excluded. Chang and Wilcox [5], Jurisch et  al. [6], 
Kobayashi [7], Fu and Ostrach [8] and Chen et al. [9] 
performed numerical computations to investigate the 

flOW structure of the steady, axisymmetric ther- 
mocapillary flow in liquid bridges. Experiments on 
thermocapillary convection in liquid bridges per- 
formed by Schwabe et al. [10], Chun [11], Preisser et  
al. [12], Kamotani et al. [13] and Velten [14] show 
that a steady flow may change into an oscillatory 
flow when a dimensionless parameter, the Marangoni 
number, which governs the strength of the ther- 
mocapillary convection, exceeds a critical value and 
other parameters are kept fixed. 

In the real floating-zone crystal process, the tem- 
perature fields, the flow fields in the molten zone, and 
the zone shape are coupled and are strongly dependent 
on the magnitude of input power. Therefore, the 
aspect ratio cannot be varied arbitrarily. This is the 
major difference between real floating-zone systems 
and liquid-bridge models. To better understand the 
transport phenomena in the floating-zone growth, a 
numerical simulation should be able to take into 
account those effects. Lan and Kuo [15-17] assume 
an ambient temperature distribution to investigate the 
interaction between the fluid flow and the solid-melt 
interface in the float-zone crystal-growth process. In 
real systems, the ambient temperature distribution is 
unknown a priori,  but the power supplied by the exter- 
nal source is easily obtained. Chen et  al. [18] inves- 
tigated the interaction between the thermocapillary 
convection and the zone shape for different strengths 
of the uniformly distributed input power. Their results 
show that the shape of the molten zone is significantly 
affected by the Prandtl number. For small Prandtl 
number fluids, when the input power increases, the 
solid-melt interface varies from convex towards the 
melt, through flat to concave, and the thermo- 
capillary-flow instability in the melt may appear 
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Bic convection Biot number 
Bit radiation Biot number 
Body, dynamic Bond number 
g gravitational acceleration 
Gr Grashof number 
h surface heat transfer coefficient 
i~(r) dimensionless shape function of the 

upper solid melt interface 
i2(r) dimensionless shape function of the 

lower solid-melt interface 
k thermal conductivity 
L dimensionless length of the material 

rod 
Lc zone height at the centerline of the rod 
Ls zone height at the surface of the rod 
Ma Marangoni number 
P dimensionless power 
Pr Prandtl number 
q power distribution 
q0 power density 
Q dimensionless power distribution 
Q0 dimensionless power density 
r dimensionless radius coordinate 
Re Reynolds number 
Rt T~/Tm 
r0 radius of the material rod 
s standard deviation of the Gaussian 

distribution 
St Stefan number 
T temperature 
Tm melting temperature 

NOMENCLATURE 

r~ 
U 

V 

G 
Z 

ambient temperature 
dimensionless radial velocity 
dimensionless axial velocity 
dimensionless pulling velocity 
dimensionless axial coordinate. 

Greek symbols 
thermal diffusivity 

/~ thermal expansion coefficient 
AL latent heat 
7 surface-tension temperature coefficient 

emissivity 
A thermal conductivity ratio 
2 density ratio 
® dimensionless temperature 
®max maximum temperature 
# dynamic viscosity 
v kinematic viscosity 
p density 
cr Stefan-Boltzmann constant 

stream function 
qJ ~ Pr Re 
~o vorticity. 

Subscripts 
1 liquid phase 
n normal derivative on the solid-melt 

interface 
r, z derivatives with respect to r, z 
s solid phase. 

before the capillary instability (originating from the 
gas-melt interface) sets in. For higher Prandtl number 
fluids, the solid-liquid interface is always convex 
towards the melt and the appearance of capillary 
instability is more likely than thermocapillary-flow 
instability. 

In molten metals and semiconductors, which are 
low Prandtl number fluids, the momentum transfer is 
vigorous. The order of the Reynolds number is higher 
than O(106). Therefore, the flow structure in molten 
metals and semiconductors is very complicated. 
Experimental observations of transport phenomena 
in metal and semiconductor melts during the floating- 
zone process are very difficult since the temperature 
in the melt exceeds 1000 K and the melt becomes 
incandescent. On the other hand, the numerical simu- 
lations are still limited in scope. Lan and Kuo [16] 
considered the effect of the buoyancy-driven flow on 
the thermocapillary convection for Si materials. Chen 
et al. [18] considered the small Reynolds number case. 
In the present paper, the heat transfer and fluid flow in 
the floating-zone process is investigated numerically. 
The distribution of the input power induced by the 
heat source is assumed to be Gaussian. The numerical 

scheme is a modified version of that used by Chen et 
al. [18] with the inclusion of the effect of buoyancy- 
driven convection. Computations have been per- 
formed for a small Prandtl number material: mol- 
ybdenum (Mo). The effect of power distribution and 
diameter of the material rod are considered. The 
present results are compared with experimental 
results [3]. 

2. GOVERNING EQUATION AND BOUNDARY 
CONDITIONS 

A schematic diagram of the floating-zone crystal- 
growth system is illustrated in Fig. 1. The input power 
distribution due to the heat source is assumed to be 
Gaussian and is stated as follows : 

qo e -  i/2(z/Sro )2 
q (z) = s x / ~  (1) 

where q0 is the density of the input power and the 
parameter s is the standard deviation of the distri- 
bution. We set that about 99% of the input power lies 
in the range of -2 .58s < z/ro < 2.58s. The melt from 
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Fig. 1. Schematic diagram of the floating-zone system. 
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the rod contains an incompressible, Newtonian liquid. 
Based on the results of Lan and Kuo [16], we can 
expect that the flow and temperature fields will be 
modified by the laige surface deformation of the gas-  
melt interface. For  the present case, the surface defor- 
mation is small because the mean surface tension of 
Mo is very large and the rod diameter considered is 
small. To simplify the analysis, the gas-melt interface 
is assumed to be flat. The surface tension is considered 
as a linear decreasing function of temperature, and 
the Boussinesq approximation has been assumed to 
be valid for density variation. The flow motion inside 
the melt is assumed to be steady, axisymmetric, and 
laminar. The cylindrical coordinates and the input 
power are considered to be fixed. 

The variables of length, velocity and pressure have 
been made dimensionless using the scales r0, (~Tm)/P 
and (7Tm)/ro, respectively; ro is the radius of the 
material rod, p is the viscosity of the melt, y is the 
negative rate of change of surface tension with 
temperature and Tm is the melting temperature. 
The dimensionless temperature is defined by 
® = ( T -  Tm)/Tm. The dimensionless equations for the 
stream function-vort ici ty-temperature form are in the 
following form 

Re ~k..,~r- ~ ~lrO)z = corr'~- -mrr 

1 Gr 
+co=-- rSco--~e®~ (2t 

qJrr-- !~k,+~b= = to9 (3) 

Pr " Re  ( ! ~lz (~r -- ! ~lr Oz ) = Orr -}- ! Or "~ (4) 

where ~b = -Vpr2/2 in the solid region. The stream 
function ~b and the vorticity co are given by 

1 1 
u = - q J z  v = - - ~ r  (5) 

r r 

and 

co = u- - v .  (6) 

The subscripts r and z denote the partial derivatives 
d/dr and O/Oz, respectively. The Prandtl,  Reynolds and 
Grashof  numbers are defined by 

Pr = v/~ 

Re  = 7Tmro/#V 

Gr = pl2 f f lTmr3 /# 2 

where ~ is the thermal diffusivity, v is the kinematic 
viscosity, fl is the thermal expansion coefficient and # 
is the gravitational acceleration. 

The appropriate boundary  conditions are as fol- 
lows : 

(i) symmetry at the center line 

Or =~b =co = 0  a t r = 0  (7) 

(ii) energy balance at the solid-gas interface of the 
material rod 

- Or = Bit [(O + l) 4 -- Rt4] .3ff Bi¢(O + 1 - Rt)  - O(z)  

at r = 1 (8) 

(iii) energy balance at the melt-gas interface of the 
molten zone 

- m(~)r = gir [(O -1- 1)' - Rt ']  q- Bi c ( 0  + 1 - R t) - a ( z )  

at r = 1 (9) 

(iv) no normal velocity and shear stress balance at 
the melt-gas interface in the molten zone, 

= -~vp (lo) 
co=®z  a t r = l  (11) 

(v) temperature equal to the melting point at the 
solid-melt interface 

® = 0  a t z = i t ( r )  and i2 ( r ) ;  (12) 

(vi) energy balance at the solid-melt interface 

(®,)2 - A(O,) 1 = - A  St  Pr  Re  Vp(e.n) 

at z = it (r) and i2 (r) (13) 

(vii) no slip and constant  upward velocity at the 
solid-melt interface, 

t~ = - ~ V p r 2 / 2  (14) 

1 
q/rr--r~kr+qJ= = ro9 a t z =  i~(r) andi2(r )  (15) 

(viii) no heat transfer far from the molten region 

® = = 0  a t z = L / 2 a n d - - L / 2  (16) 

where L is the dimensionless length of the rod and Vp 
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is the dimensionless pulling speed. The function Q (z) 
is given by 

Q(z)  = ~ e-l/2(z/s)2, (17) 

The subscript n denotes the partial derivative of nor- 
mal direction on the solid-melt interface while the 
subscripts s and 1 denote the solid and liquid phases, 
respectively. The boundary conditions contain the fol- 
lowing dimensionless parameters 

Rt = T®/Tm 
St = AL/cpTm 
A = kl/k~ 
2 = PJPl 
Qo = qoro/(ksTm) 
Bir = ~aT3mro/ks 
Bic = hro/k, 

dimensionless ambient temperature 
Stefan number 
thermal conductivity ratio 
density ratio 
dimensionless power density 
Biot number of radiation 
Biot number of convection 

where To~ is the ambient temperature, AL is the latent 
heat, Cp is the specific heat, ks is the thermal con- 
ductivity of the solid region, kj is the thermal con- 
ductivity of the molten zone, ~ is the emissivity, cr is 
the Stefan-Boltzmann constant and h is the surface 
heat transfer coefficient. The dimensionless power is 
defined by P = 27rroqo/ksTm = 27rQ0. 

3. SOLUTION PROCEDURE 

The shape of solid-melt interface is unknown a 
prior i  but must be determined as part of the overall 
solution. By assigning a specific shape to the solid- 
melt interface and temporarily discarding the Stefan 
condition (13), a complete solution of the velocity 
and temperature fields can be determined from the 
governing equations (2)-(4) and boundary conditions 
(7)-(16). The Stefan condition then provides a means 
to examine whether or not the solid-melt interface 
shape is the required solution, and a basis for com- 
puting an improved estimate of that shape when the 
condition is not satisfied. 

The numerical scheme, which is a modified version 
of that employed previously by Chen et al. [18], has 
been used to solve a system (2)-(4) with conditions 
(7)-(16). Central-difference formulas with second- 
order accuracy are used for all spatial derivatives. A 
more complete discussion of the code appears in ref. 
[18] and will not be repeated here. 

Briefly, the solution procedure involves the fol- 
lowing steps : 

(1) An initial shape of the solid-melt interface, 
which is determined by solving the pure conduction 
equation, is selected. 

(2) The liquid and solid regions are transferred to 
computational domains separately using a boundary- 
fitted curvilinear coordinate system (Thompson et al. 
[19]) that has coordinate lines coincident with the 
current boundaries. Grid stretching, which provides 
good resolution near the free surface and the solid- 
melt interface, is achieved by employing the grid con- 

trol method developed by Middlecoff and Thomas 
[20]. 

(3) Initial guesses for ®, o3 and q, over the entire 
computational domain are then chosen. 

(4) The differential equations for e~, 4' and ® are 
solved iteratively using the line-successive over- 
relaxation (LSOR) method. The iteration process is 
termed to converge when the relative error of two 
successive iterations is less than 10 -s. 

(5) The Stefan condition (11) is checked, and if it 
is not satisfied, the solid-melt interface is modified to 
reduce the error. The search procedure for the new 
shape of the solid-melt interface is described in detail 
in ref. [18]. 

(6) Return to step (2) and repeat iteratively until 
all equation and boundary conditions are satisfied. 

4. RESULTS AND DISCUSSION 

The numerical computations described above were 
done on the Vax 9320 computer at the National Cen- 
tral University and the IBM ES9000 computer at the 
National Center for High-Performance Computing 
using double-precision arithmetic. Calculations were 
performed for the case in which the dimensionless 
length of the rod is L = 20. The physical properties of 
Mo selected by the present study are listed in Table 1. 
According to the Table 1, the Prandtl number Pr, the 
thermal conductivity ratio A, and the density ratio 2 
for Mo material are 0.025, 1.0 and 1.0, respectively. 
The parameter R t  is chosen to be 0.104. To compare 
with the experimental results of Jurisch and L6ser [3], 
the radius of the material rod is selected as r0 = 1.0, 
1.3, 2.0 and 3 mm. The corresponding dimensionless 
parameters are listed in Table 2. The dynamic Bond 
number, which is usually used to represent the relative 
importance between the buoyancy-driven flow and the 
thermocapillary flow, is defined a s  Body n = Gr/Re.  For 
the rod diameter considered, the thermocapillary flow 
is dominant in the melt since the dynamic Bond num- 
ber is much less than the unity. The dimensionless 
pulling speed used by Jurisch and L6ser to grow the 
Mo crystal is about O ( 1 0 - 7 ) ,  which is very small in 
comparison with the flow velocity in the molten zone 
driven by the thermocapillary force. Therefore, we 

Table 1. Physical properties of Mo [3] 

Properties Mo 

Tm [K] 2890 
Pl [kg m 3] 9600 
Ps [kg m -3] 9600 
/~[K '] 5.5x10 -5 
V [m 2 S t] 2.5 × 10 .7  

[m2/s 1] 1.0 × 10 -5 
";[dynm-lK -l] 2.0×10 ~ 
ks[Win tK-i] 43 
kl[Wm tK l] 43 
Cp [J kg- i K- 1] 436 
AL [Jkg -I] 2.92x 105 
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Table 2. Dimensionless parameters of Mo [3] 

1845 

r0 [rnm] Re Gr Bir Bic Body, 

1.0 9.633 x 105 2.493 x 104 0.0050 0.0 0.03 
1.3 1.252 x 106 5.476 × 10  4 0.0065 0.0 0.04 
2.0 1.927 × 1 0  6 1.994 x 105 0.0100 0.0 0.10 
3.0 2.890 × 1 0  6 6.729 × 105 0.0150 0.0 0.23 

neglect the influence of the zone movement and set 
lip = 0. The grid distribution selected by the present 
computation is 51 × 31 in the material rod, 51 x 81 in 
the molten regior.L, and 51 x 31 in the crystal. For 
convenience, the stream function is rescaled by 

= ~ Pr Re. 
Figure 2 displays the flow and temperature fields in 

the melt for three different values of input power P 
with r0 = 1.3 mm. In Fig. 2, there are four toroidal 
cells in the molten zone. The fluid motion for the cells 
near the gas-melt interface, which is induced by the 
thermocapillary force, is much stronger than those 
near the zone axis, which is formed by the separation 
of the strong the~:mocapillary flow. Vigorous ther- 
mocapillary flow is confined to a very thin surface 
layer near the gas--melt interface. The strength of the 
fluid motion increases with the increase of the input 
power. The flow motion of the upper-half region of 
the molten zone is a little stronger than that of the 
lower-half region. Without the consideration of the 
buoyancy force, the flow field will be symmetric along 
z = 0. Obviously, ~Lhe strength of the thermocapillary 
flow is assisted by the buoyancy force in the upper- 
half region while it is depressed in the lower-half 
region. The solid-liquid interface is almost symmetric 
along z = 0. It is clear that the solid-liquid interface 
is not mainly dominated by the buoyancy-driven flow. 
The four-cell flow structure was also observed by Bar- 
thel et al. [1], and the numerical results of the liquid- 
bridge model [7] also show these characteristics. The 
temperature field (Fig. 2) is governed by conduction 
because the momentum diffusion is much less than the 
thermal diffusion for small Prandtl fluid. The energy 
transport in the heated region is mainly in the radial 
direction. But the energy transfer in the axial direction 
and near the flee surface enhances when the 
strength of thermocapillary flow increases. The ther- 
mocapillary flow becomes stronger when the mag- 
nitude of the input power increases. This is why the 
temperature field near the gas-melt interface is slightly 
distorted for higher input power. For the NaNO3 
material (Pr = 9.12), Lan and Kuo [15] always cal- 
culated two-cell flow. For higher Prandtl fluids, the 
influence of momentum diffusion becomes more sig- 
nificant than the thermal diffusion. Therefore, the 
energy transfer in the axial direction is strongly 
enhanced by the momentum transfer generated by the 
thermocapillary flow. As mentioned by Chen et al. 
[18], the energy transfer enhanced by the momentum 
transfer is used to enlarge the size of the molten zone 
and decreases the temperature gradients along the 

gas-melt interface. Therefore, the flow separation 
along the solid-liquid interface did not occur for 
NaNO3 materials. 

Figure 3 shows the influence of the input power on 
the surface temperature distribution of the molten 
zone for r0 = 1 mm and s = 0.775. It is obvious that 
the thermocapillary convection depresses the mag- 
nitude of superheat and slightly enlarges the outer 
zone length. As the input power increases, the growth 
of the superheat is faster than that of the outer zone 
length. Therefore, the temperature gradient along the 
free surface increases with increases in the input 
power. The difference between the conduction and 
convection models increases with the increase of the 
input power. Figure 4 illustrates the effect of the input 
power on the zone lengths for two different power 
distributions with r0 = 1.3 mm. In Fig. 4, Ls and L~ 
represent the zone length at the surface and the cen- 
terline of the rod. The results show that the outer zone 
length is greater than the inner one and the difference 
decreases with the increase of the magnitude of the 
input power. For smaller input power, the heat trans- 
port in the heated region is mainly in the radial direc- 
tion, and with the increase of the input power, the 
growth rates of the inner and outer lengths of the 
molten zone increase slowly and are almost the same. 
For higher input power, the heat transport in the 
axial direction becomes significant, and, with further 
increase of the input power, the zone lengths grow 
more obvious with the inner one faster than the outer 
one because of the radiation lost from the surface. 
Because the power density of s = 0.775 is more con- 
densed at the surface of the rod near z = 0 than it is 
at s = 1.55, the input power of s = 0.775 (where the 
growth rate of the zone length becomes significant) is 
much smaller than that ofs = 1.55. For small Prandtl 
fluids with smaller Re, the results of Chen et al. [18] 
show that the solid-melt interface varies from convex 
towards the melt, through flat to concave, when the 
input power P increases. The present results show that 
the solid-melt interface is convex towards the melt to 
the extent of the input power P considered. With 
further increases of the input power, the solutions 
do not converge due to the stronger thermocapillary 
convection in the melt. From Fig. 4, we can conjecture 
that the present results still show this trend. The exper- 
imental observation of Jurisch and L6ser [3] also 
showed that the steady thermocapillary flow only 
exists when the solid-melt interface is convex towards 
the melt. The maximum surface zone length, where 
the steady, axisymmetric thermocapillary flow can be 
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Fig. 2. Contours for streamlines and isothermals in the melt of Mo for ro = 1.3 mm and s = 1,55 with three 
different P. 

obtained by the present computations,  is ( L s )  m = 2.62 
for s = 1.55, and ( L ~ )  m = 1.79 for s = 0.775. 

Figure 5 shows the influence of  the input power and 

the power distribution on the maximum temperature 
Omax for r0 = 1.3 ram. The maximum temperature 
Omax also represents the temperature difference along 
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Fig. 3. Varie~tion of the surface temperature with P for Mo with r0 = 1.3 mm and s = 0.775. The dashed 
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Fig. 4. Zone lengths versus input power P and power distribution for Mo with ro = 1.3 mm. 

the gas-mel t  interface, and it increases as the input 
power P increases.. For  a fixed input power,  the 
maximum temperature Oma~ for s = 0.775 is higher 
than it is for s = 1.55 due to the denser distr ibution 
near z = 0 for s = 0.775 (smaller heating region). Fig- 

ure 6 is a plot o f  the maxima of  the absolute value of  
stream function in the internal and external eddies vs 
P as a function of  s with r 0 = 1.3 mm. The strength 
of  the internal eddies is much weaker than that  o f  the 
external eddies and the strength o f  both  the internal 
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Fig. 6. Maxima of the absolute value of the stream function in the internal and external eddies versus input 
power P and power distribution for Mo with r0 = 1.3 mm. The solid lines represent the absolute value of 

the stream function in the external eddies while the dashed lines designate that in the internal eddies. 

and  external  eddies increases cont inuously  with 
increasing the input  power. Since convergent  solutions 
canno t  be ob ta ined  when  the input  power  is beyond 
the extent considered,  we conjecture f rom Fig. 6 tha t  
the flow instabil i ty in the mel t  may  appear  as the 
s t rength of  the fluid mo t ion  reaches a certain order,  
which is a lmost  independent  of  the input  power dis- 
t r ibut ion.  Since the effect of  the buoyancy  convect ion 
is insignificant, the coordinate  of  the separat ion poin t  
in the radial  direct ion for the upper  zone is a lmost  the 

same as it is for the lower zone. Figure 7 shows the 
var ia t ion  of  the radial  coordinate  of  the separat ion 
point  rs and  the radial  locat ion of  the vortex center  of  
the external  eddies rc with  the input  power  P. F r o m  
the physical viewpoint,  the separat ion po in t  will drift  
towards  the mel t -gas  interface with the increase of  
the s t rength of  thermocapi l lary  convect ion and  the 
curvature  of  the sol id-mel t  interface. As  the input  
power  increases, the s t rength  of  thermocapi l lary  flow 
increases (Fig. 6), and  the curva ture  of  the mel t -so l id  



Floating-zone crystal growth of Mo 1849 

1.000 - 1.000 

0 .950 

0,900 

0.850 

0.80C 

r s 
0.750 

0.700 

0.650 

0.60(I 

0 .550 

0.500 ' 
0.300 

~lk-" = --_ ~III_ 

0.775 s 

0.950 

0,900 

0.850 

0.800 

r c 
0,750 

0.700 

0.650 

0.600 

0.550 

' 0.500 
0.450 0 .325 0.350 0.375 0.400 0 .425 

P 

Fig. 7. Variation of the radial coordinate of the separation point rs and the radial location of the vortex 
center of th,~ external eddy re with input power and power distribution for Mo and r0 = 1.3 mm. The solid 

lines denote the separation point, and the dashed lines represent the vortex center of the external eddy. 

interface decreases due to the decrease of the differ- 
ence between the inner and outer zone lengths (Fig. 
4). With the increase of the input power, the curvature 
of the melt-solid interface for the higher input power 
changes more significantly than it does for the smaller 
input power. Therefore, the results of Fig. 7 show 
that the separation point shifts toward the melt-gas 
interface with the increase of the input power until the 
input power reaches a certain value. After this value, 
the separation point moves slowly toward the core 
region. The separ~ttion point for s = 0.775 is closer to 
the gas-liquid interface than it is for s = 1.55. The radial 
position of the vortex center of the external eddies is 
slightly affected b,.¢ the magnitude of the input power 
and it is almost independent of the heating distri- 
bution. It continuously drifted away from the liquid- 
gas interface with the increase in input power. 

The experiments of the liquid-bridge model usually 
use the dimensienless Marangoni number, Ma = 
PrReOmaxLs/2, to characterize the flow structure 
of thermocapillary convection. Figure 8 shows the 
variation of the Marangoni number, Ma, with the 
surface zone lengl:h Ls. The solid lines represent the 
results calculated by the convection model, while the 
dash lines are those obtained by the conduction 
model. The Marangoni number increases as the outer 
zone length incr,~ases. Obviously, the Marangoni 
numbers calculat~ed by the conduction model are 
higher than those obtained by the convection model. 
The discrepancy itncreases with the increases of the 
outer zone length. The maximum magnitude of the 

Marangoni number Mam, where the solutions of 
steady, axisymmetric thermocapillary flow can be 
obtained by the present computations, is about 602 
for s = 1.55 and 504 for s = 0.775. 

The effect on the rod diameter are displayed in Figs. 
9-12. From Table 2, we can see that the radiation 
Biot number increases with the increase of the rod 
diameter. It means that the radiation heat loss to 
the surrounding increases as the diameter of the rod 
increases. This is why in Fig. 9 the power requirement 
to form a molten zone increases with the increase of 
the rod diameter when the power distribution is fixed 
at s = 1.55. The trends of the variations in the zone 
lengths with the input power for the different rod 
diameters are similar. As the radiation Biot number 
increases, the growth rate of the inner and outer zone 
lengths (with the increase of the input power) 
decreases and the difference between the inner and 
outer zone lengths increase. It means that the cur- 
vature of the melt-solid interface increases with the 
increase of the Biot number. From Table 3, it is clear 
that the maximum dimensionless outer zone length 
(Zs)m decreases when the rod diameter r0 increases. 
The results show similar trends with the rod diameter 
as the critical outer zone length at the transition from 
a steady, axisymmetric thermocapillary flow to an 
oscillatory flow as measured by Jurisch and Lrser [3]. 
In Fig. 10, the convergent solution of an axisymmetric, 
steady flow cannot be obtained above the extent of 
the power considered. We can conjecture that the 
instability is a strong function of the strength of ther- 
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Table 3. Results for Mo with s = 1.55 

r0 [mm] (Ls)m Mare (Ls)ct Mact 

1.3 2.6 602 2.6 638 
2.0 2.3 818 2.2 925 
3.0 1.8 794 1.8 1625 

t These results were obtained by Jurisch and L6ser [3]. 

mocapillary flow and is almost independent  of  the 
magnitude of  the rod diameter. In Fig. 11, the results 

show that the trends of  the variation of  rc and rs 
with P for the different rod diameters are similar. The 

vortex center does not  change significantly with the 
variation of  the rod diameter, and the separation point  

moves towards the gas-mel t  interface with the 
increase of  the rod diameter. Figure 12 shows that  
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Fig. 9. Zone lengths vs input power P and rod radius r0 for Mo with s = 1.55. 
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for a fixed outer  zone length the M a r a n g o n i  n u m b e r  
increases with  the increases of  the rod diameter.  The 
growth  rate of  the M a r a n g o n i  n u m b e r  with the 
increase of  the outer  zone length increases as the rod  
d iameter  increases. Jur isch and  LOser [3] est imated 

the critical M a r a n g o n i  n u m b e r  based on  the critical 
zone length measured  f rom the inter ior  s t ructure  of  
the resul tant  crystals and  the surface tempera ture  
difference calculated f rom the numerica l  solut ion of  
the conduc t ion  model.  The power  d is t r ibut ion  for 
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Fig. 12. Marangoni number Ma vs surface zone length Ls and radius r0 for Mo with s = 1.55. 

s = 1.55 is similar to that used by Jurisch and L6ser 
to melt the material rod with r0 = 1.3 and 2 ram. From 
Fig. 8, we can conclude that the critical Marangoni 
number is overpredicted by using the conduction 
analysis. If the critical Marangoni number predicted 
by Jurisch and L6ser is corrected by using the tem- 
perature difference calculated from the convection 
model, the maximum magnitude of the Marangoni 
numbers for ro = 1.3 and 2 mm obtained by the 
present computations are very close to the critical 
Marangoni number predicted by them. For r0 = 3 mm, 
the critical Marangoni number is much higher than 
the present results. From Fig. 12, we can expect that 
for L j 2  ,~ 1.8 the Marangoni number will increase 
sharply as the outer zone length increases slightly. The 
difference for r0 = 3 mm may be caused by the several 
factors. One is the error generated by the discrepancy 
between the power distribution assumed by the 
present computation and that used by Jurisch and 
L6ser. Other possibilities are due to the conduction 
model and the uncertainty of the experiments. 

5. CONCLUSIONS 

Computations have been performed to investigate 
the flow structure in the floating zone crystal-growth 
process for molybdenum materials. The thermo- 
capillary convection is dominant for the rod diameter 
considered in the present study. The present results 
are consistent with those observed by Barthel et al. [1] 
in that four toroidal cells always appear in the melt. 
The convergent solution for a steady, axisymmetric 
flow can not be obtained when the strength of the flow 
reaches a certain order, which varies insignificantly 
with the change of the heating region and the rod 
diameter. Beyond this value, we conjecture that an 

oscillatory flow may appear. The maximum outer 
zone length obtained by the present computation 
decreases with the increase of the rod diameter and 
the decrease of the heating region. They are in quali- 
tative and quantitative agreement with the critical 
outer zone length measured by Jurisch and L6ser [3]. 
The theoretical prediction of the critical surface zone 
length can be obtained using a stability analysis. The 
linear stability analysis using the flow and temperature 
states obtained by the present computation has been 
performed by Chin [21]. The critical surface zone 
length predicted by the linear theory is slightly less 
than the maximum surface zone length calculated by 
the present computation. 

The maximum Marangoni number calculated by 
the present computations is less than the critical Mar- 
angoni number obtained by Jurisch and L6ser [3]. 
From our results, it is clear that the critical Marangoni 
numbers of Jurich and L6ser are overestimated since 
the surface temperature difference is calculated using a 
conduction model. We believe that a better agreement 
may be obtained if the power distribution selected by 
us is closer to that used by Jurich and Lfser, and the 
results of Jurich and L6ser are corrected using the 
surface temperature calculated from the convection 
model. 

The magnitudes of the Reynolds and Grashof num- 
ber for silicon materials are about O(106) and O (103), 
respectively. Therefore, we can expect that the silicon 
materials will show physical behaviors similar to the 
predictions for the molybdenum materials as pre- 
dicted by the present computations. 
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